MLSynth: Towards Synthetic ML Traces

Adel Sefiane
Imperial College London
London, UK
NVIDIA
Roskilde, Denmark

Abstract

Al infrastructure continues to grow rapidly to meet the escalating
demand for compute power required to train and inference increas-
ingly capable models. This growth brings significant challenges
in both the design and operation of ML pipelines. Exploring these
challenges and evaluating potential solutions can be prohibitively
expensive and time-consuming without effective simulation tools.
This paper introduces MLSynth, a framework for synthesising ML
workloads, which is essential for meaningful benchmarking of Al
infrastructure. More specifically, MLSynth allows researchers to: (i)
define a wide range of ML models with different parallelisation
strategies, (ii) explore various sources of performance variability,
and (iii) generate synthetic Chakra execution traces that can be
used with existing simulation frameworks (e.g., ASTRA-Sim) to
comprehensively model ML workloads.

CCS Concepts

« Networks — Network simulations; Data center networks; «
Computing methodologies — Distributed artificial intelligence;
Distributed algorithms.

Keywords

Synthetic Chakra Execution Traces, Al Training, Simulation, Large-
Scale Clusters.

ACM Reference Format:

Adel Sefiane, Alireza Farshin, and Marios Kogias. 2025. MLSynth: Towards
Synthetic ML Traces. In 2nd Workshop on Networks for AI Computing (NAIC
°25), September 8-11, 2025, Coimbra, Portugal. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3748273.3749211

1 Introduction

The Artificial Intelligence (AlI) landscape has undergone a profound
transformation since the emergence of ChatGPT and Large
Language Models (LLMs). These innovations have catalysed an
unprecedented proliferation of Al applications across domains. This
rapid expansion has generated increasing demands for more sophis-
ticated Al models capable of delivering highly accurate responses
through larger architectures, enhanced reasoning capabilities, and
multi-modal support that can process text, image, audio, and video.

This evolution in Al capabilities has precipitated an extraordi-
nary surge in computational requirements and data centre capacity.

This work is licensed under a Creative Commons Attribution 4.0 International License.
NAIC ’25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2082-6/2025/09

https://doi.org/10.1145/3748273.3749211

Alireza Farshin
NVIDIA
Stockholm, Sweden

Marios Kogias
Imperial College London
London, UK

Table 1: MLSynth offers an accurate, reproducible, and tunable
way to generate ML workloads.

Accurate? Reproducible? Tunable?
Real test-bed X X
Non-Al workload X
Real Chakra ET X X
SimAI AICB X
MLSynth

For instance, training frontier models like GPT-4 requires thousands
of high-performance GPUs operating continuously for weeks or
months [13]. Consequently, it has become imperative to not only
enhance training algorithms but also to design highly efficient “Al
factories” — specialised clusters or data centres. The optimisation
of these facilities presents a multifaceted challenge spanning
scheduling algorithms [14], network topology designs [19], and
congestion control [15], all of which must be calibrated according
to specific cluster characteristics and operational requirements (i.e.,
deployed models and workload).

Due to the prohibitive cost of infrastructure, end-to-end simula-
tion of ML workloads is the only cost-effective way for innovation
and exploring various trade-offs in designing Al infrastructure.
Both academic research and industry development require accurate
simulation capabilities; researchers to explore novel solutions, and
industry practitioners to validate network configurations before
committing substantial resources to physical deployment.

However, despite this necessity, a significant gap exists between
network simulation and ML simulation approaches. ML-focused
research [14, 15, 19] typically evaluates performance on physical
test-beds, that are prohibitively expensive and/or rigid to evolve fast,
or abstract network settings through simplified analytical models.
A recent Meta study [3] revealed that even existing networking
protocols such as DCQCN [23] remain barely explored in real
ML deployments. Meanwhile, data centre networking-focused
papers frequently neglect to incorporate realistic ML workload
representation when evaluating their solutions [2, 7, 11], even when
specifically motivated by the applications for AL With the majority
of data centre expansion serving the use-cases of Al training &
inference, evaluating new contributions with accurate workloads
has become increasingly relevant.

To bridge this gap, we present MLSynth, an open-source tool
that generates accurate ML workloads as a Chakra Execution Trace
(ET) [18] that represents the workload as a directed acyclic graph
that can be used with full-stack simulators (e.g., ASTRA-sim [21]
+ ns-3, Multiverse [5]) to enable clear correlations between high-
level model parametrisation and low-level network layer metrics.
MLSynth can define workloads by (i) high-level ML parameters

https://orcid.org/0009-0008-2303-3979
https://orcid.org/0000-0001-5083-4052
https://orcid.org/0009-0006-7034-5284
https://doi.org/10.1145/3748273.3749211
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748273.3749211

NAIC °25, September 8-11, 2025, Coimbra, Portugal

(e.g., batch size, num layers, hidden size) and (ii) parallelisation
strategies (i.e., data, tensor, and pipeline parallelism). Furthermore,
MLSynth enables researchers to induce tail events in the workload
to observe the cascading impacts on every part of the workload and
better understand performance variability of various components,
which is too important to ignore in large deployments. For instance,
arecent study from ByteDance [9] reveals that approximately 10.4%
of allocated GPU hours wasted due to stragglers and 42.5% of
training jobs experienced at least 10% slowdown in large-scale
deployments. These performance variations emerge from diverse
sources spanning both hardware and software domains, including
CPU contention from co-located jobs, thermal throttling causing
GPU frequency reduction, network-related issues, and systematic
issues in workload partitioning via parallelisation strategies [4, 6].
We believe MLSynth is the first to: (i) generate fully synthetic ML
workloads using the standardised Chakra format, and (ii) system-
atically enable the exploration of various sources of performance
variability in Al infrastructure (e.g., straggler GPUs & and NICs).
MLSynth is publicly available at: github.com/NetMLSim/MLSynth.
It includes the implementation for some baseline models (i.e.,
Transformer & Mixture-of-Experts) and parallelisation strategies.

2 Existing Solutions

This section elaborates on existing solutions to generate ML
workloads; see Table 1 for comparison.

Real world test-beds. Research in distributed machine learn-
ing infrastructure frequently relies on real-world test-beds for
empirical evaluation, where physical infrastructure comprising
dozens to hundreds of high-performance GPUs connected through
sophisticated networking topologies serves as the experimental
platform. Cassini [14], for instance, utilises a 24-server test-bed,
each equipped with an A100 GPU and a NVIDIA ConnectX-5 RDMA
NIC with 50-Gbps capacity, to demonstrate the benefits of network-
aware job scheduling in ML clusters. Similarly, MLTCP [15]
employs a 12-server test-bed with A100 GPUs and 50-Gbps RDMA
NICs to validate their congestion control modifications. These
physical environments provide the gold standard for accuracy
as they capture the true behaviour of complex systems including
hardware idiosyncrasies, operating system interactions, and the
unpredictability of real-world conditions.

Despite their accuracy advantages, real-world test-beds present
significant barriers to reproducibility and accessibility, as the
substantial financial investment required, often millions of dollars
for GPU clusters, limits such experimentation to only well-
funded industrial research labs and a handful of academic insti-
tutions. Furthermore, even with identical hardware, reproducing
experiments becomes challenging due to variations in system
configurations, firmware versions, and environmental factors. This
lack of reproducibility hampers research progress by preventing
independent verification of results. Additionally, the obscurity of
physical systems makes it difficult to isolate and understand specific
phenomena, particularly with respect to network behaviour and
performance anomalies.

Analytical workloads. In response to the limitations of real test-
beds, researchers often resort to abstract workload simulations
that approximate the communication patterns and computational

Adel Sefiane, Alireza Farshin, and Marios Kogias

demands of distributed ML training. These approaches typically
employ flow-level simulations or analytical models that capture
high-level traffic patterns such as all-reduce, all-to-all, or parameter
server communication without modelling packet-level dynamics.
Such abstractions offer practical advantages; they require minimal
computational resources, provide quick time-to-solution, and en-
able exploration of large design spaces that would be prohibitively
expensive with real hardware.

However, these abstract approaches are not accurate enough

for precise infrastructure design, as they fail to capture critical
network phenomena such as queuing dynamics, congestion control
behaviour, and buffer management that significantly impact
performance, particularly in tail events. As demonstrated in recent
research, flow-level simulators systematically underestimate flow
completion times, especially for short flows and at the tail [8].
Furthermore, the disconnect between these simplified models and
the actual execution of ML workloads prevents insights into how
higher-layer design decisions, such as scheduling strategies and
parallelisation techniques, influence network traffic patterns. This
separation obscures the complex interactions between computation
and communication in ML training, where anomalies in one domain
can affect the other, causing performance degradation.
Workload Traces. Accurate workload traces can be recorded from
real test-beds and then used to replay the workload in a simulation.
Simulators such as ASTRA-Sim [21] and Multiverse [5] make use
of these kinds of traces, namely, Chakra ETs [18].

Chakra ETs represent a significant advancement towards
standardised workload representation in machine learning sim-
ulation. Developed under the MLCommons initiative, Chakra
provides an open, interoperable graph-based schema that cap-
tures key operations-including compute, memory access, and
communication-along with their dependencies, timing constraints,
and resource requirements. These execution traces effectively
serialise the execution of distributed ML training into a compre-
hensive, framework-agnostic representation that can be shared,
analysed, and simulated. When coupled with full-stack simulators,
Chakra traces enable detailed modelling of both computation
and communication aspects of ML workloads. This approach
bridges the gap between abstract simulation and real-world testing
by providing accurate workload representations while enabling
controlled experimentation across varying system configurations.

Despite these advantages, the current Chakra ecosystem faces
substantial limitations. Foremost among these is the continued
reliance on real test-beds for trace collection. As noted by Meta
researchers, “Because traces are gathered from actual machine runs,
the kernels executed are optimised for the specific system at play” [1].
This dependency means that organisations without access to
substantial hardware resources cannot generate traces representing
their workloads of interest. Additionally, traces collected from
specific hardware configurations inherit the topological constraints
and parallelisation strategies employed during collection, limiting
their flexibility for exploring alternative designs. For instance,
a trace collected from a system using data parallelism cannot
easily be adapted to evaluate pipeline parallelism or hybrid
strategies. This inflexibility restricts the utility of collected traces
for exploring the design space of emerging ML infrastructure.
Furthermore, performance anomalies or tail events captured in the

https://github.com/NetMLSim/MLSynth

MLSynth: Towards Synthetic ML Traces

trace may reflect peculiarities of the original test system rather than
inherent characteristics of the workload, reducing transparency and
potentially obscuring insights valuable for system optimisation.

Alternatively, a workload trace can be generated from scratch.
By defining model parameters and parallelisation strategies, the
workload can be recreated. To our knowledge, SimAI[20] is the
closest existing approach to addressing the challenge of end-to-end
ML infrastructure simulation. It is a very recent contribution, high-
lighting the active need across the research community. At its core,
SimAT’s AICB (Al Communication Benchmark) component offers
a sophisticated method for generating representative workloads
by mocking NCCL calls during a simulated training process. This
approach avoids the need for physical GPU infrastructure while
maintaining high fidelity to the communication patterns of real ML
training workloads.

While SimAI AICB represents a significant advancement in
generating high-fidelity workload traces without physical hardware,
several critical limitations constrain its utility for comprehensive
ML infrastructure research. The reproducibility of AICB-generated
traces remains problematic due to their strong dependency on spe-
cific NCCL implementation, which introduces subtle environmental
shifts across different research settings. This makes reproducibility
more difficult, and renders the workload more opaque as a whole.
Furthermore, despite the association between generated traces and
high-level model parameters, AICB suffers from limited tunability.
The complex sequence of kernels produced, combined with its
non-standard output format, obscures workload characteristics and
impedes researchers’ ability to introduce purposeful variations
for controlled experimentation. This lack of malleability makes it
difficult to isolate specific phenomena or test hypothetical scenarios,
such as straggler GPUs and faulty equipment, that could yield
insights into system behaviour under varied conditions. Finally,
the AICB workload generator lacks a modular framework for
integrating new architectures and parallelisation strategies. The
system is built around a fixed set of predetermined frameworks with
script-based interfaces that require users to work within predefined
model configurations and parameter spaces. The absence of well-
defined component interfaces makes it difficult to introduce novel
neural network architectures or emerging parallelisation paradigms,
constraining its utility to the specific benchmarking scenarios it
was originally designed to support rather than enabling flexible
exploration of diverse ML infrastructure configurations.

3 MLSynth: Synthesise ML Workloads

MLSynth introduces a framework for synthesising ML workloads,
which addresses the limitation of existing solutions (see Table 1).
Users can use MLSynth to define high-level ML model config-
urations and then generate Chakra ETs. Chakra ETs serve as
the critical intermediary representation, providing a standardised
schema that simplifies the exchange of workload information
across different simulation frameworks. By generating these
traces synthetically rather than capturing them from real systems,
MLSynth overcomes the limitations of physical test-bed require-
ments, maintains accuracy & reproducibility, and enables more
exploration & experimentation capabilities. For example, MLSynth
enables workload scaling, which is a useful method for scaling down

NAIC °25, September 8-11, 2025, Coimbra, Portugal

Workload Synthesis Compute Sim Networking Sim

Performance Model Parallelism GPU Collective Ll Topolo Networking
Variation Params Strategies ‘ H Specs Impl HE pology Protocols
MLSynth ASTRA-sim]—‘—‘—{ ns-3]

Chakra ET Multiverse sim]

M l 77777777777 i

Networking Metrics

- =

Compute Metrics

Figure 1: End-to-end workflow enabled by MLSynth.

experiments to shorten simulation time and explore a larger space.
MLSynth supports workload scaling across multiple dimensions,
allowing researchers to explore how performance characteristics
evolve with increasing model size, dataset size, or compute.

The synthesised traces capture core operations — including
compute, memory, and communication — along with their depen-
dencies, timing, and resource constraints. The generated traces are
subsequently fed into any compatible computational simulators
(e.g., ASTRA-sim [21] or Multiverse [5]) which utilise ns-3 for
detailed network simulation; see Figure 1 for the complete workflow.
This integrated approach creates a direct correlation between high-
level ML model configurations and low-level networking metrics,
enabling researchers to evaluate infrastructure & protocol designs
without requiring physical hardware.

3.1 Modular Design

We design MLSynth with a modular architecture to be able to model
workloads through clearly separated components, each represent-
ing individual parts of the distributed training process. This design
enables users to modify or swap out any component to adapt
the workload representation, providing flexibility for exploring
different model architectures and parallelisation strategies. Figure 2
illustrates the four main components in MLSynth.

(D) Layer. At the core lies the Layer template, which represents
individual layers that compose neural network models. This class
generates the directed graph of Chakra nodes for operations
within a single layer, returning the compute operations performed
during forward and backward passes. To support tensor parallelism,
the Layer interface accepts configuration flags that modify both
compute and communication operations as needed, enabling
accurate modelling of distributed computation within layers.

(2) Model. The Model template represents complete ML models as
sequences of layers. Since neural networks fundamentally consist
of layer compositions, this class tracks layer progression and
propagates compute nodes generated by each layer to higher-
level components. The Model abstraction maintains the structural
integrity of the neural network while providing a clean interface
for workload generation.

@ Orchestrator. The Orchestrator component models parallelism
strategies used to distribute computation across GPUs. It contains
a Model instance and orchestrates which layers are computed by
each GPU, inserting communication operations between compute
nodes returned by the Model class.

NAIC °25, September 8-11, 2025, Coimbra, Portugal

Orchestrator

Layer
Forward
Pass()
Backwards
Pass()

;" Performance
Wrapper

Figure 2: High-level design of MLSynth.

(4) Performance Wrapper. Real-world deployments frequently
experience hardware-induced performance fluctuations that cur-
rent simulators typically neglect [9, 22]. A unique contribution of
MLSynth is its capability to model realistic performance variations
that affect production ML training environments. Rather than
requiring modifications to simulation frameworks, MLSynth embeds
these variations directly in the generated workload; making
exploration easy and simulation-agnostic. Note that because
MLSynth only provides the workload, it can fundamentally only
model pre-determined performance variations; any real-time
variation at the system or network level is modelled by the
underlying simulation stack.

Because the workload is fully synthetic and thus completely
transparent, any kind of modification to the generated Chakra
nodes can be done. We model performance variation via wrapper
objects (i.e., Performance Wrappers) that intercept calls between the
Model class and the Orchestrator class. When intercepting the calls,
the performance wrapper modifies the directed graph of operations
that are returned by the Model — whether this is changing FLOPs
for compute nodes, or adding *wait’ nodes to delay some operations
to simulate slowdowns. This design preserves the separation of
concerns, allowing delay models to be applied without modifying
the underlying model implementations.

MLSynth’s components can be configured via a comprehensive
parameter set shown in Table 2. These parameters fall into three pri-
mary categories: model architecture specifications, parallelisation
strategies, and performance variance configuration.

3.2 Implementing a Workload

To synthesise a workload for a specific model in MLSynth, we need
to define the model architecture using the Orchestrator, Model,
and Layer components. Additionally, if the workload requires
experimenting with various performance variations, one should
implement Performance Wrappers to model relevant operations.
Any architecture or parallelisation strategy can be modelled by
implementing their respective components. Next, we elaborate the
details of defining the Transformer architecture in MLSynth.

Layer. A standard transformer layer consists of a multi-head
attention mechanism followed by a two-layer feed-forward net-
work, each preceded by layer normalisation and succeeded by
residual connections. For each component, we calculate floating-
point operations (FLOPs) according to tensor dimensions and
operations as specified in Megatron-LM [17]. Intermediate steps

Adel Sefiane, Alireza Farshin, and Marios Kogias

Table 2: MLSynth configuration parameters.

Configuration ‘ Description
Model Architecture
num_gpus Number of GPUs used to train
batch_size Overall batch size
micro_batch_size Size of micro-batches processed by each GPU
num_layers Number of layers in the model
hidden_dim Hidden size of model
vocab_size Size of vocabulary used in the model
scale Configures the scaling of the model
Parallelisation

dp_size Size of Data Parallel group
pp_size Size of Pipeline Parallel group
tp_size Size of Tensor Parallel group

Variance per GPU
GPUId 1d of the GPU being configured
GPU slowdown chance | Chance that compute slowdown is experienced at each layer
NIC slowdown chance | Chance that NIC slowdown is experienced at each layer
GPU layer slowdown Which layers compute slowdown is experienced
NIC layer slowdown Which layers NIC slowdown is experienced
GPU slowdown Amount of compute slowdown
NIC slowdown Amount of NIC slowdown

such as normalisation are excluded, as they are computationally
negligible. For the attention mechanism, the FLOP count is derived
from the sequence length, hidden dimension, and number of
attention heads, accounting for the query-key-value projections,
attention matrix computation, and output projection. Similarly, for
the feed-forward network, we calculate FLOPs based on the hidden
dimension and intermediate dimension, typically four times larger
than the hidden dimension in standard implementations.

When tensor parallelism is employed, our implementation
introduces additional communication operations that reflect the
distributed computation strategy. Following the Megatron-LM
approach, we implement a row-split strategy for the attention
block and a column-split strategy for the MLP block. This
parallelisation requires all-reduce collective operations after the
computation in each block to synchronise the partial results across
participating processors. The communication volume for these
operations is directly proportional to the hidden dimension size,
and the generated Chakra nodes accurately represent both the data
dependencies and the communication topology of these operations.
Model. We implement the Transformer model using the individual
layers, including specialised components such as the embedding
layer that precedes the transformer blocks. The majority of compute
in a transformer layer lies in the attention block and the feed-
forward network block [12]. The embedding layer implements
vocabulary projection and positional encoding, essential prepro-
cessing steps before the core transformer computation begins.
Furthermore, we also implement the Mixture-of-Experts (MoE) [16],
which replaces the dense feed-forward sub-layer with a pool of E
expert MLPs whose weights are not shared. A lightweight top-k
gating network routes each token to k experts and blends their
outputs. This reduces the amount of compute required and adds
some randomness to the training process within the MoE layer.
Orchestrator. We implement all of the standard parallelisation
strategies. Our provided implementation includes Data Parallelism,
Tensor Parallelism, and Pipeline Parallelism. Of note, our imple-
mentation of pipeline parallelism includes the default GPipe and
1F1B solution as in Megatron-LM [17]. Expert parallelism has been

MLSynth: Towards Synthetic ML Traces

gaining traction as a clean way to shard layers such that compute is
evenly distributed for MoE models, with recent works going as far
as using it inter-node [10]. Therefore, we have also included it. In
expert parallelism, the E experts of every layer are sharded across
different groups. The probability of each token being assigned to an
expert is modelled via a uniform distribution. This models the end-
goal of load-balancing loss [16], which aims to distribute tokens
evenly amongst all experts. The tokens are shared amongst all
shards via an all-to-all, with the resulting output from each expert
shared amongst all shards with another all-to-all.

Performance Variation. We implement two types of performance
variations: (i) GPU delays and (ii) NIC delays. The GPU delays
simulate phenomena such as thermal throttling, intra-die perfor-
mance variations, power fluctuations, and component ageing by
increasing the computational requirements (FLOPs) for specific
nodes by adjusting their computation specifications. Similarly,
NIC delays model network hardware disruptions by inserting
communication pauses before specific transmission operations.
These variations can be applied systematically or stochastically,
with configurable distributions to represent different failure modes
and their probabilities. This serves as an example of how different
what-ifs can be modelled using MLSynth.

4 Evaluation

This section focuses on two main questions to validate MLSynth’s
capabilities: (i) How accurate are the synthetic traces generated by
MLSynth and (ii) How can MLSynth enable new types of analysis
that were previously inaccessible. More specifically, we focus on
reproducing the results from Megatron-LM [17].

Experiment setup. We use ASTRA-sim with the ns-3 back-end.
Our simulation uses similar hardware characteristics to NVIDIA’s
Selene supercomputer DGX A100 nodes used in the original study,
where 8 GPUs per node are connected via NVLink over which
the tensor parallel communication occurs. As communication over
NVLink has negligible congestion relative to internode congestion,
we simulate it analytically so as to significantly reduce simulation
time. The DGX A100 nodes in Selene are connected in a three-
level fat tree. For this experiment only up to 8 X DGX A100
nodes are used (one for each pipeline stage). ASTRA-sim’s default
configuration simulates A100 GPUs at theoretical peak performance
(312 TFLOPs) for FP16 precision. We calibrated our simulation by
linearly scaling performance to 55% of theoretical maximum to
align with empirically observed metrics from Megatron-LM.

4.1 Validating Accuracy

To assess MLSynth’s accuracy in generating representative work-
loads, we replicate a foundational experiment from the Megatron-
LM [12] paper, which investigates the scaling efficiency of 1F1B
(one-forward-one-backward) pipeline parallelism with varying
batch sizes. This experiment represents a critical benchmark in
distributed training research, as it isolates the impact of pipeline
bubbles! on overall training throughput, which significantly influ-
ences the design decisions in large-scale training infrastructure.

1A bubble is the period during which certain GPUs remain idle due to dependencies
in the pipeline execution schedule.

NAIC °25, September 8-11, 2025, Coimbra, Portugal

The experimental methodology maintains a constant tensor
parallel group size of 8 while incrementally adding pipeline
stages. Crucially, as each new pipeline stage is introduced,
we proportionally scale the model size to ensure consistent
computational load (FLOPs) per GPU. This approach specifically
isolates the impact of pipeline parallelism on scaling efficiency
by controlling for computational workload variability across
configurations.

Figure 3 demonstrates that the synthetic workload generated
by MLSynth successfully reproduces a key finding from the
original Megatron-LM study smaller batch sizes lead to diminished
scaling efficiency as pipeline parallel dimensions increase. This
performance degradation occurs because smaller batch sizes result
in fewer micro-batches available for pipeline scheduling, which
consequently increases the relative size of the pipeline bubble. Re-
gardless of absolute accuracy depending on the underlying system
and network simulators, our results demonstrate that MLSynth
generates workloads exhibiting scaling behaviours consistent with
physical test-beds.

200

_

e

-
a
o

\v\

)]
o

b = 8 (Megatron-LM)
—@— b =8 (MLSynth)
1 2 4 8
Pipeline-parallel size

b =128 (Megatron-LM)
b =128 (MLSynth)

Achieved teraFLOP/s
per GPU
)
o

o

Figure 3: The effective teraFLOP/s over every GPU as pipeline
size — and consequently, bubble size - increases. MLSynth
successfully replicates Megatron-LM findings [17].

Scaling down traces. Simulating the experiment took progres-
sively longer as we scaled the number of pipelines. We tested
whether the simulation could be scaled down while maintaining
accuracy. Scaling down the model to 1% by linearly decreasing the
number of FLOPs, tensor size, and communication size decreased
the runtime from 24 hours to 23 minutes for the most expensive
setup of 8 pipeline stages with 128 batches. With the scaled down
workload, we observed the same behaviour as with the full size
workload — highlighting how a workload can easily be scaled to
enable quick iteration while maintaining accuracy.

4.2 Performance Variation Analysis

Building on previous results, we demonstrate MLSynth’s capability
to model realistic performance variability. This basic experiment
highlights how MLSynth can be configured to induce tail events that
significantly impact distributed training efficiency; an analysis that
would previously require re-running the real test-bed with exten-
sive observability. We leverage MLSynth’s performance variation
features to introduce controlled anomalies, specifically modelling a
scenario where a single GPU experiences a 10% computational
slowdown during the processing of a single micro-batch, due
to hardware-induced performance fluctuations such as thermal
throttling or component ageing [9].

NAIC °25, September 8-11, 2025, Coimbra, Portugal

Our methodology enables precise control over the timing,
magnitude, and location of performance variations by increasing
the FLOP count for specific operations in the affected micro-batch.
Figure 4 shows the results of our experiment. As expected, the
slowdown extends the overall iteration time proportionally to the
magnitude of the performance degradation. Scaling the setup up
to 64 GPUs reveals a constant relationship between slowdown and
training time, with the 21-ms increase in compute time resulting
in training time increasing for 21 ms, no matter the scale of the
experiment. Another observation concerns resource utilisation
efficiency — while training time increases by approximately S
seconds (where S represents the absolute slowdown duration), the
cumulative wasted GPU time across the entire system increases
by S X num_gpus, as all GPUs must remain idle while waiting to
synchronise communication with the straggler. This highlights how
a single straggler can have a disproportionate effect, particularly in
cloud environments where GPU resources are billed by time. While
the delay in training time might appear modest, the economic cost
of wasted GPU-hours becomes substantial at scale.

1500
GPU time wasted
Z 1000 Training time delay
E
£
E 500
0 4

1 2 4 8
Pipeline-parallel size

Figure 4: Using MLSynth to model how the impact of a single
straggler scales. The wasted GPU time increases while end-
to-end training time remains unaffected.

While this experiment demonstrates a straightforward per-
formance degradation scenario, it exemplifies MLSynth’s broader
capability to model complex system behaviours challenging to
study in production environments. MLSynth can simulate controlled
tail events, enabling the research of advanced straggler recovery
mechanisms and sophisticated fault tolerance strategies. This
enables research that would be prohibitively expensive to test on
real hardware at scale, ultimately accelerating development of more
resilient distributed ML training systems.

4.3 Flow Completion Time vs. Training Time

Finally, to illustrate the importance of full-stack analysis, we
conduct an experiment demonstrating that Flow Completion Time
(FCT) does not directly correlate with end-to-end training perfor-
mance. This challenges the conventional use of FCT as the primary
network optimisation metric. We configure a workload using
MLSynth with GPipe parallelism, implementing synchronous data
parallel all-reduce operations after each pipeline stage completes.
The experiment uses the same model configuration from previous
sections, organised into 4 pipeline groups and 4 data parallel
groups. We employ GPipe without micro-batching to amplify the
drain phase effects, making the analysis more apparent. We vary

Adel Sefiane, Alireza Farshin, and Marios Kogias

the effective bandwidth available to the all-reduce collective of
the data parallel communication for the first pipeline stage. As
shown in Figure 5, FCT increases linearly as bandwidth decreases.
However, training time remains unaffected until the collective
communication duration becomes the critical path starting around
50Gbps — specifically, when the all-reduce operation lasts until
after the final pipeline stage finishes, thus holding back the entire
training fleet. These intricacies become significantly more complex
when employing sophisticated implementations of parallelism
strategies such as inter-DC expert parallelism, DualPipe pipeline
parallelism [10], and hybrid approaches that combine multiple
parallelisation dimensions, where the interdependencies between
communication patterns, computation scheduling, and resource
utilisation create non-intuitive performance bottlenecks that
traditional metrics fail to capture. This analysis demonstrates
how MLSynth enables researchers to bridge the gap between
individual system metrics and end-to-end performance, providing
the transparency needed to understand these nuanced interactions
in distributed ML training.

30 30

@ FCT <
co lteration time | , =
o £ 20 2025
© - Eo
o< o IS
5210 1092
£ o g

Q =

= [

01 ro
20 50 100 200

Effective bandwidth (Gbps)

Figure 5: How FCT and iteration time increase as a data
parallel communication step receives less bandwidth. An
increase in FCT does not directly correlate with end-to-end
training time.

5 Conclusion

We presented MLSynth, an open-source framework that enables
researchers to synthesise ML workloads. By providing accurate,
reproducible, and tunable workloads, MLSynth addresses a critical
gap in Al infrastructure research. Our current implementation
accurately simulates fundamental compute and communication
patterns across various parallelisation strategies. We plan to extend
MLSynth to (i) include memory access modelling and complex
optimisations such as staggered communication and compute-
communication overlap; (ii) synthesise inference workloads; and
(iii) support multi-tenant scenarios.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful
comments and suggestions on this paper. This work has been
conducted with the support of the European Union EMPOWER-6G
Doctoral Network under Grant Agreement No 101120332.

MLSynth: Towards Synthetic ML Traces NAIC °25, September 8-11, 2025, Coimbra, Portugal

References [es].

[13] OpenAl, Josh Achiam, et al. 2024. GPT-4 Technical Report. https://doi.org/10.
48550/arXiv.2303.08774 arXiv:2303.08774 [cs].

[14] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. {CASSINT}:
{Network-Aware} Job Scheduling in Machine Learning Clusters. 1403-1420. https:

[1] 2023. Using Chakra execution traces for benchmarking and network performance
optimization. https://engineering.fb.com/2023/09/07/networking-traffic/chakra-
execution-traces-benchmarking-network-performance-optimization/

[2] Peirui Cao, Wenxue Cheng, Shizhen Zhao, and Yongqiang Xiong. 2024. Network X 5 . -
Load Balancing with Parallel Flowlets for AI Training Clusters. In Proceedings /" Www.usemx.o'rg/ conference/ I'l5d'124/ presentation/rajasekaran
of the 2024 SIGCOMM Workshop on Networks for AI Computing (NAIC *24). [15] Sudarsanan Rajasekaran, Sanjoli Narang, Anton A. Zabreyko, and Manya
Association for Computing Machinery, New York, NY, USA, 18-25. https: Ghobadi. 2024. MLTCP: A Distributed Technique to Approximate Centralized
//doi.org/10.1145/3672198.3673794 ’ T ’ Flow Scheduling For Machine Learning. In Proceedings of the 23rd ACM Workshop
[3] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes, on Hot Topics in Networks (HotNets °24). Association for Computing Machinery,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi New York, NY, USA, '1677.176' }.ltt.ps://dm.org/IO.l 1,45/3696348'36%878
Yang, Shugiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham, and [16] Noam Shazger, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Hongyi Zeng. 2024. RDMA over Ethernet for Distributed Training at Meta Geoffrey Hinton, and Jeff Dean. 2017. Outrageou§ly Large Neural Networks:
Scale. In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM The Sparselnyated Mixture-of-Experts Layer. arXiv:1701.06538 [cs.LG] https:
’24). Association for Computing Machinery, New York, NY, USA, 57-70. https: //arxiv.org/abs/ 1701_‘065 38 . .
//doi.org/10.1145/3651890.3672233 [17] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
[4] Aaron Grattafiori et al. 2024. The Llama 3 Herd of Models. https://doi.org/10. and Bryan Catanzarf). 2020. Megatror'l»LM: Trammg'Multl—Bllhon Par elimeter
48550/arXiv.2407.21783 arXiv:2407.21783 [cs]. Language Models Using Model Parallelism. https://doi.org/10.48550/arXiv.1909.
[5] Fei Gui, Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Ran Zhang, Hongbing Yang, 08053 arXiv:1909.08053 [cs].

[18

Srinivas Sridharan, Taekyung Heo, Louis Feng, Zhaodong Wang, Matt Bergeron,
Wenyin Fu, Shengbao Zheng, Brian Coutinho, Saeed Rashidi, Changhai Man,
and Tushar Krishna. 2023. Chakra: Advancing Performance Benchmarking and
Co-design using Standardized Execution Traces. https://doi.org/10.48550/arXiv.
2305.14516 arXiv:2305.14516 [cs].

Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. 2024. Rail-only: A Low-Cost High-Performance Network for Training

and Dian Xiong. 2025. Accelerating Design Space Exploration for {LLM} Training
Systems with Multi-experiment Parallel Simulation. 473-488. https://www.
usenix.org/conference/nsdi25/presentation/gui

[6] Tao He, Xue Li, Zhibin Wang, Kun Qian, Jingbo Xu, Wenyuan Yu, and Jingren
Zhou. 2023. Unicron: Economizing Self-Healing LLM Training at Scale. https:
//doi.org/10.48550/arXiv.2401.00134 arXiv:2401.00134 [cs].

[7] Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin

[19

Jain, Raghava Sivaramu, and Francis Matus. 2024. STrack: A Reliable Multipath LLMs with Trillion Parameters. In 20?4 IEEE Symposium on High-Performance
Transport for AUML Clusters. https://doi.org/10.48550/arXiv.2407.15266 Interconnects (HOTI). 1-10. https://doi.org/10.1109/HOTI63208.2024.00013 ISSN:
arXiv:2407.15266 [cs]. 2332-5569. . v s

[8] Chenning Li, Anton A. Zabreyko, Arash Nasr-Esfahany, Kevin Zhao, Prateesh (20] szheng Wang, Qingxu Li, Yl?hl AXu, Gang Lui Dan Li, Li Chen, Heyang th)u,
Goyal, Mohammad Alizadeh, and Thomas Anderson. 2025. m4: A Learned Llnkgng Zhel?g, _Sen Zhang, Ylkal_Zhu’ Y_ang I_‘lu’ Pengcheng Zhang, Kun_ Qian,
Flow-level Network Simulator. https://doi.org/10.48550/arXiv.2503.01770 Kunling He, Jiaqi Gao, Ennan Zhai, Dennis Cai, and Binzhang Fu. 2025. {SimAI}:

arXiv:2503.01770 [cs]. Unifying Architecture Design and Performance Tuning for {Large-Scale} Large
y Language Model Training with Scalability and Precision. 541-558. https://www.

9
[usenix.org/conference/nsdi25/presentation/wang- xizheng-simai

=

Jinkun Lin, Ziheng Jiang, Zuquan Song, Sida Zhao, Menghan Yu, Zhanghan
Wang, Chenyuan Wang, Zuocheng Shi, Xiang Shi, Wei Jia, Zherui Liu, Shuguang - walgT A >
Wang, Haibin Lin, Xin Liu, Aurojit Panda, and Jinyang Li. 2025. Understanding W'111_1am Won, Taekyung Heo, Saeed Rashidi, Sr_ inivas Sr 1dh§ran, §udar shan
Stragglers in Large Model Training Using What-if Analysis. https://doi.org/10. Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: M,O‘?lehng Hierarchical
48550/arXiv.2505.05713 arXiv:2505.05713 [cs]. Networks and Disaggregated Systems for Large-model Training at Scale. In 2023

[10] Aixin Liu et al. 2025. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL] IEEE International Symposium on Performance Analysis of Systems and Software
https://arxiv.org/abs/2412.19437 (ISPASS). 283-294. https://doi.org/10.1109/ISPASS57527.2023.00035

[21

[11] Rixin Liu, Menghao Zhang, Zihan Niu, Zili Meng, and Xiaohe Hu. [n. d.]. Themis: (22] Tianyuan Wu, ng Wang, Yinghao'Yu, Siran Yan'g,. Wenchao Wu, Qinkai Duan,
Efficiently Mitigating Congestion-Induced Fairness Disparities in Long-Haul (3}10‘1?“5 Yang, J‘?“f‘a“g Wang, Lin Qu, and Liping Zhar{g. 2024 FALF:QN:
RDMA Networks. ([n. d.]). Pinpointing and Mitigating Stragglers for Large-Scale Hybrid-Parallel Training.

https://doi.org/10.48550/arXiv.2410.12588 arXiv:2410.12588 [cs].

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 523-536. https://doi.org/10.
1145/2829988.2787484

[12] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. 2021. Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM. https://doi.org/10.48550/arXiv.2104.04473 arXiv:2104.04473

[23

https://engineering.fb.com/2023/09/07/networking-traffic/chakra-execution-traces-benchmarking-network-performance-optimization/
https://engineering.fb.com/2023/09/07/networking-traffic/chakra-execution-traces-benchmarking-network-performance-optimization/
https://doi.org/10.1145/3672198.3673794
https://doi.org/10.1145/3672198.3673794
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://www.usenix.org/conference/nsdi25/presentation/gui
https://www.usenix.org/conference/nsdi25/presentation/gui
https://doi.org/10.48550/arXiv.2401.00134
https://doi.org/10.48550/arXiv.2401.00134
https://doi.org/10.48550/arXiv.2407.15266
https://doi.org/10.48550/arXiv.2503.01770
https://doi.org/10.48550/arXiv.2505.05713
https://doi.org/10.48550/arXiv.2505.05713
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/arXiv.2104.04473
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://doi.org/10.1145/3696348.3696878
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.2305.14516
https://doi.org/10.48550/arXiv.2305.14516
https://doi.org/10.1109/HOTI63208.2024.00013
https://www.usenix.org/conference/nsdi25/presentation/wang-xizheng-simai
https://www.usenix.org/conference/nsdi25/presentation/wang-xizheng-simai
https://doi.org/10.1109/ISPASS57527.2023.00035
https://doi.org/10.48550/arXiv.2410.12588
https://doi.org/10.1145/2829988.2787484
https://doi.org/10.1145/2829988.2787484

	Abstract
	1 Introduction
	2 Existing Solutions
	3 MLSynth: Synthesise ML Workloads
	3.1 Modular Design
	3.2 Implementing a Workload

	4 Evaluation
	4.1 Validating Accuracy
	4.2 Performance Variation Analysis
	4.3 Flow Completion Time vs. Training Time

	5 Conclusion
	Acknowledgments
	References

