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Some of these services demand
bounded low-latency and predictable service time.
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Motivation
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A server receiving 64 B packets at 100 Gbps has only
5.12 ns to process a packet before the next packet arrives.
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It is essential to use our current
hardware more efficiently.
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Memory Hierarchy
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Memory Hierarchy

For a CPU that is running at 3.2 GHz, every 4 cycle is around 1.25 ns.




Memory Hierarchy
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Memory Hierarchy

To keep up with 100 Gbps
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We focus on better management of cache.

Memory Hierarchy

For a CPU that is running at 3.2 GHz, every 4 cycle is around 1.25 ns.



Better Cache Management
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Last Level Cache (LLC)
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Non—-uniform Cache Architecture (NUCA)

Since Sandy Bridge
(~2011), LLC is not
unified any more!
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Non—-uniform Cache Architecture (NUCA)

Intel’s Complex Addressing

Determines the mapping
between memory address
space and LLC Slices.

Almost every cache line (64 B)
maps to a different LLC slice.

Known Methods:
Clémentine Maurice et al.

[RAID ‘15]*

e Performance Counters

* Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien

Francillon. 2015. Reverse Engineering Intel Last-Level Cache Complex Addressing Using

Performance Counters.



Intel Xeon,
E5-2667 v3*,
(Haswell)
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Measuring Access Time to LLC Slices

Different access time
to different LLC slices



Measuring Access Time to LLC Slices
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Accessing
the closer
LLC slice
can save

up to
~20 cycles,
l.e., 6.25

ns.
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Slice—aware Memory Management

Allocate memory from y ]
physical memory in @ T -- C

way that it maps to the i -
appropriate LLC slice(s). i




Slice—aware Memory Management

Use Cases: ‘ -
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Slice—aware Memory Management

Use Cases: ‘

e |solation
e Shared Data |
e Performance

Every core is associated
to its closest LLC slice.




Slice—aware Memory Management

200 T T T T T T T

N : Slice-aware ——
1 1 . Normal
150 - i
L2 Slice
Average Read _
OPS (Million) 100} 256 2.5 ]
KB MB
50 - -
0 i i | | | | I | | 1 | | |

32K 064K 128K 256K 512K 1M 2M 4M 8M 16M 32M 04M 128M
Array Size (Byte)




Slice—aware Memory Management

200 | | | |
Slice-aware =X
Normal
T
- Beneficial
Average Read : .
OPS (Million) 100 256 1| when wqulng
KB set can fit into
a slice.

T\ J

0 i i
32K 064K 128K 256K 512K 1M 2M 4M 8M 16M 32M 04M 128M

Array Size (Byte)



Slice—aware Memory Management

There are many applications that have this characteristic.




Slice—aware Memory Management

There are many applications that have this characteristic.

Key-Value Stores » Frequently Accessed keys



Slice—aware Memory Management

There are many applications that have this characteristic.

Key-Value Stores » Frequently Accessed keys

Virtualized
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Network Functions Packet’s Header




Slice—aware Memory Management

There are many applications that have this characteristic.

Key-Value Stores »| Frequently Accessed keys

Virtualized

. } /
Network Functions Packet’s Header

Can fit into a slice



Slice—aware Memory Management

There are many applications that have this characteristic.

Key-Value Stores »| Frequently Accessed keys

Virtualized

. } /
Network Functions Packet’s Header

[ We focus on virtualized network functions in this talk! J




CacheDirector

A network |/O solution which extends Data Direct I/O

(DDIO) by employing Slice-aware Memory Management



Traditional 1/0
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Data Direct 1/0 (DDIO)

Core 0 . Core 2 . DMA*-mg pCICI(leS direc’rly to

LLC rather than DRAM.

LLC
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Sending/Receiving M
B Packets via DDIO
=

* Direct Memory Access (DMA)
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Data Direct 1/0 (DDIO)

Core 0 . Core 2 . Packets go to random slices!
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Data Direct 1/0 (DDIO)

Core 0 Packets go to random slices!
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CacheDirector

» Sends packet’s header to the

. . 4 mbuf struct
appropriate LLC slice. vdatabd | —».  Usedtosave
headroom size
¢ |mp|emen’red as a pCIr"I' Of user- Headroom I — Changes Dynamically
space NIC drivers in the Data e
Pl D | i K_I_ (DPDK) Packet —_ Will be put in the
ane eve Opmen | . (Packet Header) appropriate LLC slice
. DPDK with
[ J
!n’rroduces dynamic headroom | gest of the packet CacheDirector
in DPDK data structures.
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Evaluation — Testbed
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Evaluation — Testbed
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Evaluation — Testbed Metron [NSDI ‘18]*
Stateful NFV Service Chain

S--9

Router NAPT Load Balancer
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Packet Generator Device under Test

Actual Campus Trace Running VNFs

Intel Xeon E5 2667 v3 m Mellanox ConnectX-4

* Georgios P.Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q.

Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying
Hardware.




Stateful NFV Service Chain
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Stateful NFV Service Chain
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Stateful NFV Service Chain
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Stateful NFV Service Chain
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Router NAPT Load Balancer

Evaluation — 100 Gbps
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* Service Level Objective (SLO)




Read More ...

* More NFV results
 Slice-aware key-value store

* Portability of our solution on Skylake
architecture

* Slice Isolation vs. Cache Allocation
Technology (CAT)

e More ...




Conclusion

* Hidden opportunity that can decrease average access
time to LLC by ~20%

« Useful for other applications

O https://github.com/aliireza/slice-aware

* Meet us at the poster session

This work is supported by WASP, SSF, and ERC.



https://github.com/aliireza/slice-aware




Portability
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Packet Header Sizes

e |Pv4:
14 B (Ethernet)+ 20 B (IPv4) + 20 B (TCP) < 64 B

e |Pvé:
14B (Ethernet) + 36 B (IPv6) + 20 B (TCP) > 64 B

[ Any 64 B of the packet can be placed in the appropriate slice J




Limitations and Considerations

* Data larger than 64 B - Using linked-list and scatter data
Future H/W features:
Bigger chunks (e.g., 4k pages)
Programmable
 Slice Imbalance

Limiting our application to smaller portion of LLC,
but with faster access.



Relevant and Future Works

NUCA

Cache-aware Memory Management
(e.g., Partitioning and Page Coloring)

Extending CacheDirector for the whole packet

Slice-aware Hypervisor



Slice—aware Memory Management
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Evaluation — Low Rate
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Tail Latency (99 (us)
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EVCIIUCl‘hon — qul vs. Throughpui Stateful NFV Service Chain
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