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Some of these services demand 

bounded low-latency and predictable service time.
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Motivation

A server receiving 64 B packets at 100 Gbps has only 

5.12 ns to process a packet before the next packet arrives.
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It is essential to use our current 

hardware more efficiently.
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Memory Hierarchy

CPU

Registers

Cache

L1,L2, LLC

DRAM

Getting

Slower

Memory Hierarchy

>200

cycles

(>60ns)

4-40

cycles

<4

cycles

For a CPU that is running at 3.2 GHz, every 4 cycle is around 1.25 ns. 
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Memory Hierarchy
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Memory Hierarchy

To keep up with 100 Gbps 

time budget (5.12 ns)

Cache becomes 

valuable, as every access 

to DRAM is expensive
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<4

cycles

For a CPU that is running at 3.2 GHz, every 4 cycle is around 1.25 ns.

>200
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(>60ns)

We focus on better management of cache.
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Better Cache Management

Reduce tail latencies of 

NFV service chains 

running at 100 Gbps 

by up to 21.5%
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Last Level Cache (LLC)

Intel

Processor
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Non-uniform Cache Architecture (NUCA)

Since Sandy Bridge 

(~2011), LLC is not 

unified any more!

Intel

Processor
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Non-uniform Cache Architecture (NUCA)

* Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien

Francillon. 2015. Reverse Engineering Intel Last-Level Cache Complex Addressing Using 

Performance Counters.

Intel’s Complex Addressing

Determines the mapping 

between memory address 

space and LLC Slices.

Almost every cache line (64 B) 

maps to a different LLC slice. 

Known Methods:

Clémentine Maurice et al. 

[RAID ‘15]*

• Performance Counters

Intel

Processor
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Measuring Access Time to LLC Slices

Intel Xeon

E5-2667 v3

(Haswell)

Different access time 

to different LLC slices



15

Measuring Access Time to LLC Slices

Measuring 

Read Access 

Time from 

Core 0 to all 

LLC slices
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Opportunity

Accessing 

the closer 

LLC slice 

can save 

up to

~20 cycles, 

i.e., 6.25 

ns.

For a CPU that is running at 3.2 GHz.
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Slice-aware Memory Management

Allocate memory from 

physical memory in a 

way that it maps to the 

appropriate LLC slice(s).

DRAM
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Slice-aware Memory Management

Use Cases:

• Isolation
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Slice-aware Memory Management

Use Cases:

• Isolation

• Shared Data
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Slice-aware Memory Management

Use Cases:
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• Shared Data

• Performance
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Slice-aware Memory Management

Use Cases:

• Isolation

• Shared Data

• Performance

Every core is associated 

to its closest LLC slice.
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Slice-aware Memory Management

256 
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Slice-aware Memory Management

Beneficial 

when working 

set can fit into 

a slice.

256 

KB
2.5 

MB

20 

MB
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Slice-aware Memory Management

There are many applications that have this characteristic.
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Slice-aware Memory Management

Key-Value Stores Frequently Accessed keys

There are many applications that have this characteristic.
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Slice-aware Memory Management

Virtualized 

Network Functions 
Packet’s Header

Key-Value Stores Frequently Accessed keys

There are many applications that have this characteristic.
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Slice-aware Memory Management

Can fit into a slice
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Slice-aware Memory Management

Can fit into a slice

Virtualized 

Network Functions 
Packet’s Header

Key-Value Stores Frequently Accessed keys

There are many applications that have this characteristic.

We focus on virtualized network functions in this talk!
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CacheDirector

A network I/O solution which extends Data Direct I/O 

(DDIO) by employing Slice-aware Memory Management
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Traditional I/O

LLC

1. NICs DMA* packets to 

DRAM

2. CPU will fetch them to LLC

* Direct Memory Access (DMA)

DRAM



DMA*-ing packets directly to 

LLC rather than DRAM.
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Data Direct I/O (DDIO)

* Direct Memory Access (DMA)

LLC

Sending/Receiving 

Packets via DDIO 

DRAM



Packets go to random slices!
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Data Direct I/O (DDIO)
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CacheDirector

CacheDirector
Sending/Receiving 

Packets via DDIO 
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CacheDirector

CacheDirector
Sending/Receiving 

Packets via DDIO 

Sending/Receiving 

Packets via DDIO 
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CacheDirector

• Sends packet’s header to the 

appropriate LLC slice.

• Implemented as a part of user-

space NIC drivers in the Data 

Plane Development Kit (DPDK). 

• Introduces dynamic headroom 

in DPDK data structures.
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Evaluation - Testbed

Packet Generator Device under Test 

Running VNFs

Intel Xeon E5 2667 v3 Mellanox ConnectX-4

100 Gbps
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Evaluation - Testbed

Packet Generator Device under Test 

Running VNFs

100 Gbps

Actual Campus Trace

Timestamp

Intel Xeon E5 2667 v3 Mellanox ConnectX-4
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Evaluation - Testbed

Packet Generator Device under Test 

Running VNFs

100 Gbps

Actual Campus Trace

Metron [NSDI ‘18]*

* Georgios P.Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q. 

Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying 

Hardware.

Stateful NFV Service Chain

Intel Xeon E5 2667 v3 Mellanox ConnectX-4
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Evaluation – 100 Gbps

Achieved Throughput

~76 Gbps

Stateful NFV Service Chain
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Evaluation – 100 Gbps
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Evaluation – 100 Gbps

Achieved Throughput

~76 Gbps

Faster access to 

packet header

Faster processing 

time per packet

Reduce queueing 

time

21.5%

Improvement

More Predictable

Fewer SLO Violations

* Service Level Objective (SLO)

Stateful NFV Service Chain
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Read More …

• More NFV results

• Slice-aware key-value store

• Portability of our solution on Skylake 

architecture

• Slice Isolation vs. Cache Allocation 

Technology (CAT)

• More …



• Hidden opportunity that can decrease average access 

time to LLC by ~20%

• Useful for other applications

• Meet us at the poster session
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Conclusion

https://github.com/aliireza/slice-aware

This work is supported by WASP, SSF, and ERC.

https://github.com/aliireza/slice-aware
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Backup
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Portability

• Intel Xeon Gold 

6134 (Skylake)

• Mesh architecture

• 8 cores and 18 

slices

• Non-inclusive LLC

• Does not affect 

DDIO
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Packet Header Sizes

• IPv4:

14 B (Ethernet)+ 20 B (IPv4) + 20 B (TCP) < 64 B

• IPv6:

14B (Ethernet) + 36 B (IPv6) + 20 B (TCP) > 64 B

Any 64 B of the packet can be placed in the appropriate slice
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Limitations and Considerations

• Data larger than 64 B

• Slice Imbalance

Limiting our application to smaller portion of LLC, 

but with faster access.

• Using linked-list and scatter data

• Future H/W features:

• Bigger chunks (e.g., 4k pages)

• Programmable  
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Relevant and Future Works

• NUCA

• Cache-aware Memory Management 

(e.g., Partitioning and Page Coloring)

• Extending CacheDirector for the whole packet

• Slice-aware Hypervisor
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Slice-aware Memory Management
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Evaluation – Low Rate

Simple Forwarding 

Application

1000 Packets/s
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Evaluation – Tail vs. Throughput

Slightly shifts 

the knee, 

which means 

CacheDirector

is still beneficial 

when system is 

experiencing a 

moderate load.
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Evaluation – Tail vs. Throughput

Slightly shifts 

the knee, 

which means 

CacheDirector

is still beneficial 

when system is 

experiencing a 

moderate load.


